Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2.

نویسندگان

  • Sharon B Minsuk
  • Rudolf A Raff
چکیده

Larval dorsoventral (DV) and left-right (LR) axial patterning unfold progressively in sea urchin development, leading to commitment of the major embryonic regions by the gastrula stage. The direct-developing sea urchin Heliocidaris erythrogramma has lost oral-aboral differentiation along the DV axis but has accelerated vestibular ectoderm development on the left side. NiCl(2) radializes indirect-developing sea urchins by shifting cells toward a ventral fate (oral ectoderm). We treated embryos of H. erythrogramma and the indirect-developing H. tuberculata with NiCl(2). H. tuberculata was ventralized exactly like other indirect developers, establishing that basic patterning mechanisms are conserved in this genus. H. erythrogramma was also radialized; timing, dosage response, and some morphological features were similar to those in other sea urchins. Ectodermal explant and recombination experiments demonstrate that the effect of nickel is autonomous to the ectoderm, another feature in common with indirect developers. However, H. erythrogramma is distinctly sinistralized rather than ventralized, its cells shifting toward a left-side fate (vestibular ectoderm). This geometric contrast in the midst of pervasive functional similarity suggests that nickel-sensitive processes in H. erythrogramma axial patterning, homologous to those in indirect developers, have been redeployed, and hence co-opted, from their ancestral role in DV axis determination to a new role in LR axis determination. We discuss DV and LR axial patterning and their evolutionary transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive evolution of bindin in the genus Heliocidaris is correlated with the shift to direct development.

Sea urchins are widely used to study both fertilization and development. In this study we combine the two fields to examine the evolution of reproductive isolation in the genus Heliocidaris. Heliocidaris tuberculata develops indirectly via a feeding larva, whereas the only other species in the genus, H. erythrogramma, has evolved direct development through a nonfeeding larva. We estimated the t...

متن کامل

Sea urchin Hox genes: insights into the ancestral Hox cluster.

We describe the Hox cluster in the radially symmetric sea urchin and compare our findings to what is known from clusters in bilaterally symmetric animals. Several Hox genes from the direct-developing sea urchin Heliocidaris erythrogramma are described. CHEF gel analysis shows that the Hox genes are clustered on a < or = 300 kilobase (kb) fragment of DNA, and only a single cluster is present, as...

متن کامل

Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins.

We investigated adult rudiment induction in the direct-developing sea urchin Heliocidaris erythrogramma microsurgically. After removal of the archenteron (which includes presumptive coelomic mesoderm as well as presumptive endoderm) from late gastrulae, larval ectoderm develops properly but obvious rudiments (tube feet, nervous system, and adult skeleton) fail to form, indicating that coelomic ...

متن کامل

Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.

In the sea urchin embryo, the animal-vegetal axis is established during oogenesis and the oral-aboral axis is specified sometime after fertilization. The mechanisms by which either of these axes are specified and patterned during embryogenesis are poorly understood. Here, we investigated the role of cellular interactions in the specification of the ectoderm territories and polarization of the e...

متن کامل

Oral–aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans

Glycosaminoglycans (GAGs) are a heavily sulfated component of the extracellular matrix (ECM) implicated in a variety of cell signaling events involved in patterning of embryos. Embryos of the sea urchin Strongylocentrotus purpuratus were exposed to several inhibitors that disrupt GAG function during development. Treatment with chlorate, a general inhibitor of sulfation that leads to undersulfat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution & development

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2005